skip to main content


Search for: All records

Creators/Authors contains: "Anderson, Brian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Accidents readily occur when workers are not attentive to the hazards of their work. For some professionals, such as workers in the construction and mining industry, exposure to workplace hazards occurs on a daily basis. Such repetitive exposure to workplace hazards poses unique challenges for the attention of workers. This review explores how, in the absence of negative consequences, repetitive exposure to hazards decreases attention to them. Recommendations, informed by the science of attention, suggest how to combat the tendency to ignore frequently-exposed hazards and restore worker vigilance, thereby reducing the frequency of workplace accidents. Experiential training incorporating virtual reality holds some promise.

     
    more » « less
  2. During geomagnetic storms a large amount of energy is transferred into the ionosphere-thermosphere (IT) system, leading to local and global changes in e.g., the dynamics, composition, and neutral density. The more steady energy from the lower atmosphere into the IT system is in general much smaller than the energy input from the magnetosphere, especially during geomagnetic storms, and therefore details of the lower atmosphere forcing are often neglected in storm time simulations. In this study we compare the neutral density observed by Swarm-C during the moderate geomagnetic storm of 31 January to 3 February 2016 with the Thermosphere-Ionosphere-Electrodynamics-GCM (TIEGCM) finding that the model can capture the observed large scale neutral density variations better in the southern than northern hemisphere. The importance of more realistic lower atmospheric (LB) variations as specified by the Whole Atmosphere Community Climate Model eXtended (WACCM-X) with specified dynamics (SD) is demonstrated by improving especially the northern hemisphere neutral density by up to 15% compared to using climatological LB forcing. Further analysis highlights the importance of the background atmospheric condition in facilitating hemispheric different neutral density changes in response to the LB perturbations. In comparison, employing observationally based field-aligned current (FAC) versus using an empirical model to describe magnetosphere-ionosphere (MI) coupling leads to an 7–20% improved northern hemisphere neutral density. The results highlight the importance of the lower atmospheric variations and high latitude forcing in simulating the absolute large scale neutral density especially the hemispheric differences. However, focusing on the storm time variation with respect to the quiescent time, the lower atmospheric influence is reduced to 1–1.5% improvement with respect to the total observed neutral density. The results provide some guidance on the importance of more realistic upper boundary forcing and lower atmospheric variations when modeling large scale, absolute and relative neutral density variations. 
    more » « less
  3. Abstract

    We examine the statistical distribution of large‐scale Birkeland currents measured by the Active Magnetosphere and Planetary Electrodynamics Response Experiment in four unique categories of geomagnetic activity for the first time: quiet times, storm times, quiet‐time substorms, and storm‐time substorms. A novel method is employed to sort data into one of these four categories, and the categorizations are provided for future research. The mean current density is largest during substorms and its standard deviation is largest during geomagnetic storms. Current densities which are above a low threshold are more likely during substorms, but extreme currents are far more likely during geomagnetic storms, consistent with a paradigm in which geomagnetic storms represent periods of enhanced variability over quiet times. We demonstrate that extreme currents are most likely to flow within the Region 2 current during geomagnetic storms. This is unexpected in a paradigm of the current systems in which Region 1 current is generally larger.

     
    more » « less
  4. Abstract

    The World Magnetic Model (WMM) is a geomagnetic main field model that is widely used for navigation by governments, industry and the general public. In recent years, the model has been derived using high accuracy magnetometer data from the Swarm mission. This study explores the possibility of developing future WMMs in the post-Swarm era using data from the Iridium satellite constellation. Iridium magnetometers are primarily used for attitude control, so they are not designed to produce the same level of accuracy as magnetic data from scientific missions. Iridium magnetometer errors range from 30 nT quantization to hundreds of nT errors due to spacecraft contamination and calibration uncertainty, whereas Swarm measurements are accurate to about 1 nT. The calibration uncertainty in the Iridium measurements is identified as a major error source, and a method is developed to calibrate the spacecraft measurements using data from a subset of the INTERMAGNET observatory network producing quasi-definitive data on a regular basis. After calibration, the Iridium data produced main field models with approximately 20 nT average error and 40 nT maximum error as compared to the CHAOS-7.2 model. For many scientific and precision navigation applications, highly accurate Swarm-like measurements are still necessary, however, the Iridium-based models were shown to meet the WMM error tolerances, indicating that Iridium is a viable data source for future WMMs.

    Graphical Abstract

     
    more » « less
  5. Abstract

    The magnitude of tropical cooling during the Last Glacial Maximum (LGM; ∼19–26.5 ka) remains controversial, with sea‐surface temperatures cooling by several degrees less than most temperatures reconstructed at high elevations. To explain this discrepancy, past studies proposed a steeper (increased) lapse rate—the temperature decrease with elevation—during the LGM relative to today. For instance, LGM temperatures in East Africa reconstructed from branched GDGTs from multiple elevations support an ∼0.9°C/km increase in the lapse rate during the LGM relative to present day. Lapse rates are a critical part of the Earth's climate sensitivity and atmospheric energy transfer, and it is vital to know whether and by how much the tropical lapse rate steepened during the LGM. Here, we simulate LGM glacier extents in the Rwenzori Mountains of Uganda with and without a change in lapse rate using a range of temperature and precipitation estimates. We find that the lapse rate must have been steeper than present for glaciers to reach their LGM positions using available sea‐level temperature and precipitation estimates for East Africa.

     
    more » « less
  6. We discuss the design of quantum hybrid inertial sensor that combines an optomechanical inertial sensor with the retroreflector of a cold atom interferometer. This sensor fusion approach provides absolute and high-accuracy measurements with cold atom interferometers, while utilizing the optomechanical inertial sensor at frequencies above the repetition rate of the atom interferometer. This improves the overall measurement bandwidth as well as the robustness and field deployment capabilities of these systems. We evaluate which parameters yield an optimal acceleration sensitivity, from which we anticipate a noise floor at nano-glevels from DC to 1 kHz.

     
    more » « less